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Abstract
We investigate the effects of off-diagonal disorder on localization properties in quantum bond
percolation networks on cubic lattices, motivated by the finding that the off-diagonal disorder
does not always enhance the quantum localization of wavefunctions. We numerically construct
a diagram of the ‘percolation threshold’, distinguishing extended states from localized states as
a function of two degrees of disorder, by using the level statistics and finite-size scaling. The
percolation threshold increases in a characteristic way on increasing the disorder in the
connected bonds, while it gradually decreases on increasing the disorder in the disconnected
bonds. Furthermore, the exchange of connected and disconnected bonds induced by the
disorder causes a dramatic change of the percolation threshold.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The problem of quantum localization of wavefunctions in
disordered systems has received intensive attention since the
pioneering work by Anderson [1–7]. The Anderson model
for a disordered system is typically described using the tight-
binding one-electron Hamiltonian,

H =
∑

n

εn|n〉〈n| +
∑

m,n(m �=n)

tm,n|m〉〈n|, (1)

where |m〉 (or |n〉) indicates the orthonormalized atomic orbital
at site m (or n), εn denotes the orbital energy and tm,n denotes
the energy of transfer between the sites m and n.

Quantum percolation, defined as the quantum version of
the classical percolation by Broadbent and Hammersley [8, 9],
is described as a special case of the disordered system in
which εn randomly takes the values 0 and ∞ while tm,n =
t is a constant in the case of site percolation, and tm,n

randomly takes the values t and 0 while εn = 0 in the
case of bond percolation. Quantum percolation scenarios
have been discussed in efforts to obtain an understanding of
unusual electronic transport properties such as the colossal
magnetic resistance in perovskite manganite films [10, 11] and

minimal conductivity in graphene [12]. Furthermore, it has
been debated whether the localization–delocalization transition
occurs even in two-dimensional percolation networks [13, 14].

Another topic of interest is the effect of diagonal and
off-diagonal disorder on the quantum percolation threshold
pq which distinguishes extended states from localized states.
In the case of site percolation, it has been observed that pq

increases on introducing disorder into site energies because the
disorder enhances the localization [15–17]. However, we have
not known much about the case of bond percolation [17, 18].
The effect of off-diagonal disorder on localization is not
simple even in ordinary disordered systems. Previous studies
reported that wavefunctions around the band center are not
localized irrespective of the strength of the disorder, because
the off-diagonal disorder both enhances and suppresses the
localization of eigenstates [19, 20]. Therefore, it is worth
studying the effect of off-diagonal disorder on the localization–
delocalization transition, starting from the bond percolation
Hamiltonian.

In this paper, we numerically examine disordered
quantum bond percolation networks and derive a diagram
of the percolation threshold describing the localization–
delocalization transition as a function of two types of disorder
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Figure 1. Schematic illustration of D(t) described by equation (2).

for connected and disconnected bonds. We find some novel
effects of off-diagonal disorder on the quantum percolation
threshold, in contrast with the diagonal disorder case: (i) the
quantum percolation threshold pq is only weakly influenced
by weak and strong disorders of connected bonds; (ii) pq

drastically changes for medium disorder of connected bonds;
(iii) disorder of disconnected bonds suppresses pq .

In section 2, we introduce disordered quantum bond
percolation networks and show the level spacing distribution
P(s) of the system. The diagram is shown in section 3 and the
final section is devoted to a summary and discussion.

2. Level spacing distribution in disordered bond
percolation networks

The problem of off-diagonal disorder in the (nearest-neighbor)
bond percolation on a cubic lattice is described by introducing
the following independent identical probability distribution for
each of the nearest-neighbor transfer energies t :

D(t) = p
1

W1
θ

(
W1

2
− |t − t0|

)

+ (1 − p)
1

W2
θ

(
W2

2
− |t|

)
, (2)

where 0 � p � 1 is the probability of a connected bond of
strength t0, θ is the step function taking the values 0 and 1 for
negative and positive arguments respectively, and W1 and W2

are the widths of the two constituent box distributions of the
connected bond and the disconnected bond respectively. We
put t0 = 1 in this paper. The distribution function D(t) is
visualized in figure 1.

Each sample system is generated on the cubic lattice of
linear size L using equation (2) for the nearest-neighbor bond
and adopting a cyclic boundary condition. We obtain N (=L3)

eigenvalues by diagonalizing the Hamiltonian of the disordered
quantum bond percolation network. A typical distribution
of eigenvalues (density of states) is shown in figure 2. The
strength of disorder W1 contributes smoothing of the detailed
spiky structure of the density of states, due to the existence
of small disconnected clusters, except the one at the band
center [21]. The singularity at the band center is sensitive to
the strength of the disorder in the disconnected bond, that is
W2. To avoid the singularity at the band center, we focus our
attention on a fairly small energy interval [−0.6,−0.2] near
the band center, in which the sample-averaged density of states
looks almost constant.

Figure 2. Sample-averaged density of states for the case p = 0.46,
W1 = 10.0, W2 = 0.1 and L = 12.

Figure 3. Level spacing distribution P(s) for the case W1 = 2.0 and
W2 = 0.2. The Wigner distribution and the Poissonian one are
displayed for reference.

It should be noted that the density of states of the
disordered bond percolation network is smoother than that of
the conventional bond percolation network over a wide range
of p. This is because the off-diagonal disorder of disconnected
bonds suppresses the classical percolation threshold pc, so
most of the states belong to the percolating cluster even for
small p. In this paper, we consider only the region which is at
a distance from the classical percolation threshold pc to avoid
seeing the energy levels of small disconnected clusters.

In order to investigate localization properties of electronic
states in the system, we examine the level statistics
of the energy spectra, which is a powerful tool for
finding the localization–delocalization transition in percolation
networks [22–24]. The random matrix theory states that the
level spacing distribution P(s) is the Wigner distribution for
extended states and the Poissonian distribution for localized
states [22]. We use a lot of sample systems of the order
of roughly 103 or 104 so that we obtain 105 eigenvalues
in the energy interval [−0.6,−0.2] to determine the P(s).
The unfolding procedure is applied to eliminate the energy
dependence of the mean level spacing [25]. The level spacing
distribution P(s) for W1 = 2.0 and W2 = 0.2 with varying
p is exemplified in figure 3. The change in P(s) from
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Figure 4. γ (L , p) as a function of p for the case W1 = 2.0 and
W2 = 0.2. The value of p at size-independent γ gives the
percolation threshold pq .

the Poissonian distribution to the Wigner distribution with
increasing p indicates that electronic states become extended
for large values of p. Although it is expected that the P(s)
for lower p clearly follows the Poissonian distribution, we
calculate the P(s) only near the quantum percolation threshold
pq to escape taking into account the energy levels of small
disconnected clusters.

3. Localization–delocalization transition in
disordered bond percolation networks

We extract information on the localization–delocalization
transition from P(s) with varying probability p and system
size L, in order to determine the percolation threshold pq .
It is known that the finite-size scaling analysis of the level
spacing distribution is useful for finding the critical value of the
probability pq [18]. We evaluate a quantity γ (L, p) defined as

γ (L, p) ≡ A − AW

AP − AW
, (3)

A(L, p) ≡
∫ ∞

2
P(s, L, p) ds, (4)

where AP and AW are the same integrals for the Poissonian
distribution PP(s) and the Wigner distribution PW(s),
respectively [22]. In figure 4 we show γ as a function of p for
the case of W1 = 2.0 and W2 = 0.2, and different system sizes
L = 8, 10, 12 and 14. It is clearly seen that all curves cross at
a single point of p where γ is independent of the system size,
namely at the percolation threshold pq .

Our numerically obtained diagram for pq(W1, W2) is
shown in figures 5 and 6. For fairly small ranges of W1 and
W2, the percolation threshold is insensitive to the strength of
disorder W1 of the originally connected bonds and depends
linearly on W2 for the originally disconnected bonds as shown
in figure 5. The off-diagonal disorder around t0 = 1
both enhances and suppresses the multiple-scattering processes
through the increasing and decreasing of the rates of transition
between orbitals. The two effects seem to cancel to each other

Figure 5. Narrow view of the percolation threshold pq as a function
of W1 (�0.5) and W2 (�0.3).

Figure 6. Wide view of the percolation threshold as a function of
W1 and W2.

and to yield a W1-independent property for pq . In contrast to
this, the disorder W2 around the originally disconnected bond
enhances the transition because the starting point is perfectly
disconnected. This may be understood as the extreme case
where t0 = 0. The disorder partially connects the originally
disconnected bonds and lowers the percolation threshold of the
original network.

Furthermore, another behavior of the percolation thresh-
old is observed when we extend the range of W1 up to 10.0
as shown in figure 6. The percolation threshold dramatically
increases around W1 = 2.0 due to the fact that the originally
connected bond begins to become partially disconnected in the
region of W1. On the other hand, we meet again a flat area
when the value of W1 is larger than 3.0. We also examine the
case of W1 = 20.0, and have found the same behavior of the
percolation threshold. The peculiar behavior of the percolation
threshold which is independent of the strength of the disorder
W1 is quite interesting; however, we do not have an explanation
for the overview being so flat in the area of larger W1.

It is also remarkable that the effect of disorder W2 on the
originally disconnected bond always shows the same feature,
independent of the value of the strength of disorder W1 of the
originally connected bond. Unfortunately, we could not calcu-
late the P(s) for the strongly disordered regime of W2 so the
phase diagram of the percolation threshold is restricted for W2.
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The strong disorder causes sharper peaks of the density of
states and destroys the flatness of the density of states in the
energy range [−0.6,−0.2]. However, if the behavior of pq

remains linearly dependent of W2 even for W2 > 0.3, the per-
colation threshold pq(W1 � 0.5, W2) is expected to vanish for
W2

∼= 2.0, in which region most of the bonds become con-
nected.

4. Summary and discussion

To summarize, we numerically examined the effect of off-
diagonal disorder in quantum bond percolation networks
on cubic lattices. We calculated a phase diagram for the
percolation threshold pq as a function of two kinds of strengths
of disorder, namely that of the disorder on the connected bonds
W1 and that of the disorder on the disconnected bonds W2, by
using the finite-size scaling of the level spacing distribution.
We found that the percolation threshold pq is independent of
the strength of disorder W1 for the ranges W1 � 1.0 and
W1 � 3.0 and increases dramatically for 1.0 � W1 � 3.0.
The connected bond begins to be disconnected by the disorder
W1 at around 2.0, so the localization of the electronic states is
enhanced, and higher pc is observed. We further found that
the percolation threshold linearly decreases with increasing
W2 irrespective of the strength of disorder W1. Although
we could not obtain the pc for larger W2 due to singularities
of the density of states, it is expected that the percolation
threshold will vanish for larger W2 and that all electronic
states will become extended in a strongly disordered regime.
Off-diagonal disorder in percolation networks produces a rich
phase diagram for the percolation threshold, in contrast with
diagonal disorder, because it enhances and suppresses the
localization of the electronic states.
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